metal-organic papers

Received 5 July 2002 Accepted 9 July 2002

Online 19 July 2002

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Neil F. Curtis* and David C. Weatherburn

School of Chemical and Physical Sciences, Victoria University of Wellington, Box 600, Wellington, New Zealand

Correspondence e-mail: neil.curtis@vuw.ac.nz

Key indicators

Single-crystal X-ray study T = 158 K Mean σ (C–C) = 0.008 Å R factor = 0.041 wR factor = 0.083 Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[(1*RS*,7*RS*,8*RS*,14*RS*)-5,12-Dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene- $\kappa^4 N^{1,4,8,11}$]nickel(II) perchlorate

The title compound, $[Ni(C_{24}H_{32}N_4)](ClO_4)$, has singlet ground-state nickel(II) complex cations with tetrahedrally twisted $[\pm 0.013 (4) \text{ Å}]$ square-planar coordination by four N atoms of the 14-membered diamine-diimine tetraaza-macrocycle and perchlorate anions. A perchlorate O atom is sited near the tetragonal axis $[Ni \cdots O 2.694 (4) \text{ Å}]$, with both N-H groups oriented towards the other side of the plane forming N-H···O hydrogen bonds to O atoms of different perchlorate ions, with no O atom near the nickel(II) tetragonal axis.

Comment

The *meso* macrocyclic diamine–diimine (7RS,14SR)-5,12dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11diene (mL) is formed by reaction of ethane-1,2-diamine with benzylidene acetone (Hideg & Lloyd, 1970; 1971; Hankovszky *et al.*, 1974). Compounds of mL with nickel(II) and copper(II) (Cook *et al.*, 1973), cobalt(III) (Curtis, 1973; Hay & Gidney, 1976) and rhodium(III) (Hay & Gidney, 1976) have been described, and the structure of *trans*-[Cu(mL)(NO₃)₂] with the *trans*-C-*meso* configuration has been determined (Ferguson *et al.*, 1978).

Later work (Hankovszky *et al.*, 1979; Lloyd *et al.*, 1981) showed that solutions of 5,12-dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene in polar solvents contain at least 4-methyl-6-phenyl-3-azahexa-3,5-diene-1-amine, its monocyclized derivative (the seven-membered cyclic imine 5-methyl-7-phenyl-2,3,6,7-tetrahydro-1*H*-1,4-diazapine) and the *meso* and *rac* cyclic dimers of this, mL and rL, which interconvert (see *Scheme*). The crystalline material is isomerically pure ml, but mL and rL are present in solutions in polar solvents. Reaction of ml in methanol with nickel(II) perchlo-

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The cation of the title compound, drawn with displacement ellipsoids at the 50% probability level. H atoms are shown as circles of arbitrary radii.

rate yields a mixture of the meso- and rac-isomeric macrocycle compounds, $[Ni(mL)](ClO_4)_2$ and $[Ni(rL)](ClO_4)_2$, in proportions depending on reaction conditions (Curtis, 2001). Procedures for separating these isomeric nickel(II) compounds by crystallization of sparingly soluble bis-acetonitrile or bis-ammine adducts of [Ni(mL)](ClO₄)₂ have been described. The X-ray crystal structure of $[Ni(rL)](ClO_4)_2$, (I), is now reported.

The asymmetric unit of (I) contains the cation [(1RS,7RS,8RS,14RS)-5,12-dimethyl-7,14-diphenyl-1,4,8,11tetraazacyclotetradeca-4,11-diene]nickel(II), N-rac-[Ni-(rL)]²⁺, shown in Fig. 1, which has approximate twofold symmetry, and two perchlorate counter-ions.

The cation has the macrocycle in square-planar coordination to singlet ground-state nickel(II), with slight $[\pm 0.013 (4) \text{ Å}]$ tetrahedral twisting of the N₄ plane, with the nickel 0.077 (4) Å from this plane, displaced towards an axial perchlorate O atom (below). The bond lengths and angles about N4-C5 and N11-C12 (Table 1) confirm the presence and location of the two imine functions.

The groups N1-H1 and N8-H8 are on the same side of the molecular plane, with C7-H7 and C14-H14 on the other side, confirming the configuration 1RS,7RS,8RS,14RS, which molecular mechanics calculations indicated was least strained for this cation (Curtis, 2001).

The Ni-N distances are normal for singlet ground state nickel(II) compounds of amine-imine macrocyles, with mean values Ni $-N_{amine}$ 1.964 (6) Å and Ni $-N_{imine}$ 1.923 (6) Å, with the bond to imine N atom shorter, as is usual.

The displacement (Å, s.u. < 0.005 Å) of atoms from the NiN₂ chelate planes are, for the Ni1/N1/N4 plane: C2 -0.64, C3 0.01; Ni1/N8/N11 plane: C9 0.66, C10 -0.03 (both fivemembered chelate rings are in asymmetric gauche conformations); Ni1/N4/N8 plane: C5 0.09 (C51 0.38), C6 -0.06, C7 -0.72 (C71 -0.78); Ni1/N11/N1 plane: C12 0.08 (C121 0.38), C13 -0.02, C14 -0.76 (C141 -0.93) (both six-membered chelate rings are in asymmetric twist conformations). The substituents are all equatorially oriented.

The perchlorate atom O21 is axially sited, with Ni1-O21 2.694 (4) Å, O21-Ni1-N1 93.7 (2)°, O21-Ni1-N8 90.0 (2)°, O21-Ni1-N4 98.6 (2)° and O21-Ni1-N11 86.7 (2)°. The two N-H groups are oriented towards the opposite side of the plane, hydrogen bonded to O atoms of different perchlorate ions [N8···O11ⁱ 2.930 (4) Å, H8···O11ⁱ 2.12 Å, N8-H8···O11ⁱ 144°; N1···O23ⁱ 2.856 (4) Å, $H1 \cdots O23^{i}$ 2.86 Å, $Ni - H1 \cdots O23^{i}$ 132°; symmetry code: (i) -x+1/4, y+1/4, z+1/4]. There is no O atom near the axial site on this side of the plane.

Experimental

N-rac-[Ni(rL)](ClO₄)₂ was prepared as reported by Curtis (2001) and crystallized from an acetone/water solution.

Crvstal data

[Ni(C ₂₄ H ₃₂ N ₄)](ClO ₄)	Mo $K\alpha$ radiation
$M_r = 634.13$	Cell parameters from 4795
Orthorhombic, Fdd2	reflections
a = 40.66 (2) Å	$\theta = 2.4-23.6^{\circ}$
b = 29.40(1) Å	$\mu = 0.95 \text{ mm}^{-1}$
c = 9.267 (4) Å	T = 158.2 (2) K
$V = 11078 (8) \text{ Å}^3$	Needle, orange
Z = 16	$0.85 \times 0.13 \times 0.07 \text{ mm}$
$D_x = 1.521 \text{ Mg m}^{-3}$	

2435 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.106$ $\theta_{\rm max} = 26.3^{\circ}$

 $h = -50 \rightarrow 50$

 $k = -36 \rightarrow 36$

 $l = -6 \rightarrow 11$

Data collection

Siemens CCD area-detector diffractometer φ and ω scans Absorption correction: none 34536 measured reflections 4658 independent reflections

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.04P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.016$
$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.36 \mathrm{e} \mathrm{\AA}^{-3}$
Absolute structure: Flack (1983),
1661 Friedel pairs
Flack parameter $= 0.020$ (18)

Table 1

Selected geometric parameters (Å, °).

Ni1-N4	1.919 (4)	Ni1-N1	1.972 (4)
Ni1-N11	1.927 (4)	N4-C5	1.281 (6)
Ni1-N8	1.955 (4)	N11-C12	1.300 (6)
N4-Ni1-N11	174.63 (19)	N4-C5-C6	123.0 (5)
N4-Ni1-N8	93.64 (17)	N4-C5-C51	121.9 (5)
N11-Ni1-N8	86.14 (19)	C6-C5-C51	115.0 (4)
N4-Ni1-N1	86.12 (17)	N11-C12-C121	122.6 (5)
N11-Ni1-N1	93.75 (17)	N11-C12-C13	121.4 (5)
N8-Ni1-N1	176.3 (2)	C121-C12-C13	116.0 (5)

H atoms were included in the riding-model approximation

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-32 (Johnson & Burnett, 1999); software used to prepare material for publication: PARST (Nardelli, 1995).

The diffraction data were collected by Professor W. T. Robinson, Chemistry Department, University of Canterbury. We thank Dr G. J. Gainsford, Industrial Research Ltd, for assistance.

References

- Cook, D. F., Curtis, N. F. & Hay, R. W. (1973). J. Chem. Soc. Dalton Trans. pp. 1160–1167.
- Curtis, N. F. (1973). J. Chem. Soc. Dalton Trans. pp. 1212-1214.
- Curtis, N. F. (2001). Inorg. Chim. Acta, 317, 27-32.
- Ferguson, G., Roberts, P. J., Lloyd, D., Hideg, K., Hay, R. W. & Piplani, D. P. (1978). J. Chem. Res. (S), pp. 314–315.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Hankovszky, O. H., Hideg, K., Lloyd, D. & McNab, H. (1974). J. Chem. Soc. Chem. Commun. pp. 378–379.
- Hankovszky, O. H., Hideg, K., Lloyd, D. & McNab, H. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 1345–1350.
- Hay, R. W. & Gidney, P. M. (1976). J. Chem. Soc. Dalton Trans. pp. 974-978.
- Hideg, K. & Lloyd, D. (1970). J. Chem. Soc. D, pp. 929-930.
- Hideg, K. & Lloyd, D. (1971). J. Chem. Soc. C, pp. 3441-3445.
- Johnson, C. K. & Burnett, M. N. (1999). ORTEP-32. University of Glasgow, Scotland.
- Lloyd, D., Scheibelein, W. & Hideg, K. (1981). J. Chem. Res. (S), pp. 62-63.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.